The difference between Contraharmonic mean and Quadratic mean

When used as nouns, contraharmonic mean means a type of average calculated as the arithmetic mean of the squares of the values divided by the arithmetic mean of the values, ie. c = { {( x_1^2 + x_2^2 + ... + x_n^2) \over n } \over { ( x_1 + x_2 + ... + x_n ) \over n } }\ or \ c(x_1, x_2, ..., x_n) ={ { x_1^2+x_2^2+...+x_n^2} \over {x_1+x_2+...+x_n }}, whereas quadratic mean means a type of average, calculated as the square root of the mean of the squares, ie. q = \sqrt { x_1^2 + x_2^2 + ... + x_n^2 \over n }.


check bellow for the other definitions of Contraharmonic mean and Quadratic mean

  1. Contraharmonic mean as a noun (mathematics):

    A type of average calculated as the arithmetic mean of the squares of the values divided by the arithmetic mean of the values, ie. C = { {( x_1^2 + x_2^2 + ... + x_n^2) \over n } \over { ( x_1 + x_2 + ... + x_n ) \over n } }\ or \ C(x_1, x_2, ..., x_n) ={ { x_1^2+x_2^2+...+x_n^2} \over {x_1+x_2+...+x_n }}

  1. Quadratic mean as a noun (mathematics):

    A type of average, calculated as the square root of the mean of the squares, ie. Q = \sqrt { x_1^2 + x_2^2 + ... + x_n^2 \over n }.